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SUMMARY

This work aims at developing/combining numerical tools adapted to the simulation of the near field of
highly underexpanded jets. An overview of the challenging numerical problems related to the complex
shock/expansion structure encountered in these flows is given and an efficient and low-cost numerical
strategy is proposed to overcome these, even on short computational domains. Based on common upwinding
algorithms used on unstructured meshes in a mixed finite-volume/finite-element approach, it relies on
an appropriate utilization of zonal anisotropic remeshing algorithms. This methodology is validated for
the whole near field of cold air jets issuing from axisymmetric convergent nozzles and yielding various
underexpansion ratios. In addition, the most usual corrections of the k–� model used to take into account
the compressibility effects on turbulence are precisely assessed. Copyright q 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The key parameter used to classify the various morphologies of an axisymmetric underexpanded
jet which discharges into a quiescent atmosphere is the nozzle pressure ratio (NPR) between
the static pressures prevailing at the nozzle exit and in the surrounding atmosphere. For small
NPRs (typically between 1 and 2.1 for an air flow), the initial expansion waves reflect at the
jet boundary, coalesce and give rise to an oblique shock regularly reflecting at the jet axis. Due
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to the new expansion zone appearing downstream of the reflected shock, this first shock cell
structure is replicated several times until the growing shear layer reaches the jet axis. Thus, weakly
underexpanded jets yield the famous diamond-like shock structure embedded within the potential
core. Such jets are used in many applications, for instance to assist laser cutting [1], to drill by
thermal spallation [2] or to improve surface coating by thermal sprays [3]. They are also the
subject of some recent studies whose objectives, among others, are to reduce the screech noise
[4] or the infrared signature in rocket exhaust plumes [5]. For higher values of NPR, the shock
structure becomes more complex, as illustrated in Figure 1 (for NPR typically larger than 10).
Indeed, the reflection of the incident shock (zone 1) at the axis cannot be regular anymore, so that
a strong shock, called a Mach disk (zone 2), appears. The flow is subsonic downstream of this
Mach disk, whereas it remains supersonic downstream of the reflected shock (zone 3). The triple
point connects the various discontinuities and is at the origin of a new slip line, rapidly evolving
into a shear layer, which separates these two flows embedded within the potential core. The lengths
of the first shock cell and of the subsonic zone are increasing functions of NPR, and so is the
shock diameter. As a consequence, typically for about NPR>4, the subsonic zone drills the second
structure and ‘swallows’ all the following structures for NPR>7. In such a case, the jet yields a
highly curved shock structure (the ‘barrel shock’), followed by two distinct coaxial shear layers
wherein expansion and compression zones alternate without giving rise to any additional stationary
shock structure. For NPR>10, the first shock cell is so large that the Mach disk directly interacts
with the main shear layer. Unfortunately, very little experimental data are available to describe
such interactions. Correlations are available though to approximately determine the distance Xdm
between the Mach disk position and the orifice section [6, 7], the Mach disk diameter Ddm [8] or
the length Ls of the subsonic core [9]. In addition, experimental data such as those of Love et al.
[10] can be used to determine the initial angle ai between the jet boundary and the axis. However,
neither correlations nor experimental data are yet available to describe the evolution of the Mach
disk curvature or the angle ar between the reflected shock and the axis which are among the key
parameters controlling the mixing properties of the jet downstream of the Mach disk. The high
levels of shock curvature encountered for these highly underexpanded jets also play an important
role in (i) the modification of the turbulence structure in comparison with perfectly expanded jets;
(ii) the instabilities related to the strong interaction between the Mach disk and the shear layer;
and (iii) the enhancement of the development of streamwise vortices surrounding the near-jet core
[11] (induced by Taylor–Görtler instabilities). Nevertheless, their impact on the turbulent mixing
properties is not clearly identified. So, a better understanding of the various aspects of the structure
of such flows is necessary to improve the safety and the efficiency of the various applications where
they are encountered. For instance, (i) in short take off and vertical landing situations [12], the
greatly enhanced air entrainment is likely to induce severe thrust losses while the large amplitude of
instabilities can severely damage the nozzle lip or (ii) during the certification procedure of a newly
developed jet engine, the manufacturer has to ensure the preservation of the engine integrity, in the
case of an accidental boring of the chamber wall, in spite of the formation of a high-pressure jet,
possibly reacting, which can impact and severely damage vital equipments (in particular, the pylon
truss that attaches the engine block to the plane wing). Considering the difficulty of experimentally
investigating such flows with state-of-the-art metrology, numerical simulations are an extremely
useful tool that can be of great help in improving our knowledge of the detailed structure of these
flows and of the interaction with their environment in many situations of practical interest.

Unfortunately, due to the great complexity and sensitivity of the flow structure to the value of
NPR, the development of a modeling and numerical strategy able to cope with this kind of flow

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2179–2205
DOI: 10.1002/fld



ROBUST METHODOLOGY FOR RANS SIMULATIONS 2181

Figure 1. Schematic of the near-field structure of a highly underexpanded jet for NPR>10: (1) incident
shock, (2) Mach disk, (3) reflected shock, (4) sonic line, (De) orifice diameter, (ai ) initial angle between
the shock and the axial direction, (ar ) angle between the reflected shock and the axial direction, (Ddm)
Mach disk diameter, (Dcmax) maximal radial extension of the shock structure, (Xdm) length of the shock

structure, (Ls) length of the subsonic zone.

while preserving a good robustness and fair accuracy over a wide range of NPR is not an easy task.
To begin with moderately underexpanded turbulent jets, the pioneering studies of Dash and Wolf
[13, 14] are a good example of what can be achieved by considering a two-dimensional flow
configuration. By using a two-equation model for a one-point turbulence closure (k–� and k–�
models) and by modifying only the expression of the turbulent viscosity coefficient in order to
correctly reproduce the observed spreading rate of supersonic shear layers, these authors obtained
some promising results. A similar approach was followed by Chuech et al. [15] in the case of
an axisymmetric configuration. But in spite of these promising results, the model was not able to
precisely capture the complex interactions occurring within the potential zone. Continuing now
with highly underexpanded jets, Cumber et al. [16, 17] showed, for various levels of NPR, that the
compressibility correction of Sarkar et al. [18] greatly improved the quality of the prediction of the
axial velocity evolution, but only in the far flow field. By modifying the standard model constant
C�2 and using a new scale for the axial coordinate to take into account a reduced effective nozzle
diameter (the boundary layer not being calculated), they showed that the error on the predicted
shock locations could be reduced. However, a great amplitude error of the axial velocity or pressure
still remained. In fact, whereas the standard k–� model leads to an overestimation of the spreading
rate of the shear layer, this compressibility correction leads to an opposite effect accompanied by
an underestimation of the level of the axially decaying oscillations of the physical variables within
the potential core. Such tendencies have been recently confirmed by Birkby and Page [19]. Abdol-
Hamid and Wilmoth [20] have attempted to consider some non-equilibrium turbulence effects
in addition to the compressibility corrections. According to these authors, a multiscale approach
could greatly help to more accurately describe the modification of the turbulence structure related,
in particular, to the interaction of the first reflected shock with the shear layer. Unfortunately,
the determination of the related transfer coefficients is a delicate task that would benefit from
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specifically dedicated experiments not yet available. This situation can explain why such an
approach has not yet led to any further developments. Focusing now on the numerical strategies
elaborated to deal with these jets, it should be emphasized that meshing and mesh adaptation
procedures used for most simulations of these particular turbulent flows (see, for example, the study
by Prudhomme and Haj-Hariri [21]) are not reported to be extensively based on parameters related
both to some crucial flow properties (steep gradients and/or curvatures associated to the spatial
evolution of the various variables) and to CFD-related constraints (control volume geometrical
aspect ratio for instance). Considering the complexity of the flow morphology, a careful mesh
adaptation [12] seems though to be unavoidable to obtain reasonably mesh-independent results. For
example, Berzins et al. [22] applied a h-refinement strategy for adapting the mesh for simulating
underexpanded jets with an NPR up to about 16. Their approach was based on a local error
estimate calculated from the difference between the solution obtained by using a first-order spatial
discretization and a second one. However, the comparisons with experimental data have been quite
limited in most of these studies since they have been confined to a scrutinization of the variables’
evolution on the jet axis only. As a consequence, the origins of the reported numerical inaccuracy
are not yet clearly identified for highly underexpanded jets since it was not easy to determine the
respective importance of the possible sources of uncertainty, e.g. the intrinsic weaknesses of the
physical modeling and those of the numerical scheme employed. Last but not least, to the best of
our knowledge and for NPRs larger than 5, there exists no detailed numerical study focusing on the
near flow field in an axisymmetric configuration, although this zone is of paramount importance as
far as the subsequent development of the jet is concerned. Accordingly, the primary objective of the
present study is to propose a relevant combination of mature turbulence modeling and numerical
techniques able to ensure both robustness and fair accuracy of the simulations of the near field
of underexpanded jets over a wide range of NPR. A methodology of mesh embedding/adaptation
aimed at shortening as much as possible the streamwise extension of the computational domain
while preserving the accuracy of the numerical procedure in the zone of primary interest, e.g. in
the near flow field, is presented. Various corrections of the k–� turbulence model proposed in the
literature to incorporate compressibility effects are then tested in the case of a perfectly expanded
jet, considered to be the first step of a model testing before considering its use for the simulation of
highly underexpanded turbulent jets. Namely, if the compressibility corrections fail to improve the
quality of the results for a perfectly expanded jet, it is highly doubtful that they will do so when
simulating highly underexpanded jets. Finally, comparisons with recently available experimental
data illustrate the level of accuracy that can be achieved with such a methodology whilst opening
a perspective of clear assessment of any (potential) gain in accuracy that could be obtained in the
future through turbulence modeling and/or numerical procedure evolutions.

2. MODELING AND NUMERICAL FRAMEWORK

2.1. Basis of flow description

In the axisymmetric coordinate system (O, x,r), the conservative form of the averaged compress-
ible Navier–Stokes equations is considered to describe the temporal and spatial evolution of the
vector of conservative variablesU =(�,�ṽx ,�ṽr ,�Ẽ)T, where �, vx , vr and E stand for the density,
the longitudinal and radial velocity components and the total energy (including the turbulence
kinetic energy), respectively. Adopting standard notations, the overbar denotes a Reynolds average
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and the tilde a Favre (e.g. density weighted) average. This set of governing equations can be cast
in the following compact form:

�
�t
U+ �

�x
Fx (U)+ �

�r
Fr (U)= �

�x
Dx (U)+ �

�r
Dr (U)+Se(U)+Sv(U) (1)

where Fx (U) and Fr (U) represent the convective fluxes and Dx (U) and Dr (U), the diffusive fluxes.
The origin of the two additional source terms Se(U) and Sv(U) is purely geometric and stems
from the choice of writing the system in a form that mimics as much as possible that obtained in
a 2-D Cartesian co-ordinate system. If one denotes by � the orthoradial direction, the components
of the various fluxes are given by
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In the above terms, p, h and � stand for the static pressure, the enthalpy and the thermal conductivity,
respectively. Assuming that the contribution of the fluctuations of velocity and temperature is
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negligible for the viscous and heat fluxes, the Reynolds average of the viscous tensor components
and of the heat diffusion terms can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where the ‘mean’ molecular dynamic viscosity �∗ is expressed as a function of the mean temperature
T̃ through a Sutherland’s law formulation, Pr is the Prandtl number, � is the specific heat capacity
ratio and Cv is the heat capacity at constant volume, supposed constant. The Reynolds stress tensor
and the enthalpy turbulent fluxes are closed by a classical Boussinesq-like formulation for non-zero
divergence flows, namely:
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�x

)
(5)

where �t is the eddy viscosity coefficient introduced by such a closure. This set of equations is
supplemented by the equation of state which reads:

p=(�−1)�

(
Ẽ− ṽi ṽi

2
−k

)
(6)

where k is the turbulent kinetic energy. The k–� turbulence model retained to express the coefficient
of turbulent viscosity �t is presented in the following subsection.

2.2. Turbulence modeling

Assuming that Morkovin’s hypothesis holds, the methodology applied to model incompressible
turbulent flows [23] can be extended to deal with compressible turbulent flows. Accordingly, using
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the decomposition of the variables previously introduced, the transport equation for the turbulent
kinetic energy k is given by [24]
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with 	k =1.0. The production term Pk is classically given by
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where the Reynolds-stress expressions are given in Equation (5). The term G that represents the
correlations between the velocity fluctuations and the mean pressure gradients, assimilated to an
enthalpic production term, may induce an important negative contribution in regions of large density
or pressure variations such as strong compression or expansion zones. Two closure expressions
for this term will be tested, namely:
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The first closure expression of G is quite commonly used even in situations involving dilatable
flows such as in subsonic impinging flames simulations [25]. Following Bailly et al. [26], the
coefficient 	t, to be chosen in the interval [0.7–1], will be given the value 	t=0.7. In deriving
the second expression for G, Shyy and Krishnamurthy [24] supposed that the total enthalpy and
the heat capacity remain constant and that the density fluctuations are isobaric. They expressed
the parameter C1 as a function of the turbulent Mach number Mt by C1=2Mt/(1−Mt) with

Mt=
√
2k/a∗, where a∗ is the ‘mean’ sound speed i.e. a∗ =

√
�r T̃ . The pressure-dilatation term

�d is an additional work induced by simultaneous fluctuations of the pressure and the volume
of the fluid particles. It can generally induce a considerable negative contribution to the balance
of turbulent kinetic energy in the case of a shock/turbulence interaction. The two most popular
approaches suggested in the literature will be considered. On the one hand, by combining the
transport equations for the entropy and the density fluctuations, Zeman [27] suggested that this term
can be linked to the pressure variance which is supposed to decrease toward an equilibrium value
during a characteristic time which has to be evaluated. The consideration of a linear decrease of the
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pressure variance and the choice of the turbulent Mach number Mt to represent this characteristic
time lead thus to the following expression:

�d=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Cd2�
k2

�
S∗
ij S

∗
ij, Mt�0.1
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√
�+1

2

(11)

where S∗
ij are the components of the deviatoric part of the deformation tensor. It should be

noted that this model suffers from a large variability of the values adopted for the constant Cd.
A value of 0.004 has been retained for our simulations according to previous tests performed
for nearly transonic impacting jet configurations.§ On the other hand, analysing results of direct
numerical simulations for free homogeneous shear flows, Sarkar et al. [18] showed that only the
incompressible part of the field of pressure can really modify the balance of turbulent kinetic
energy. Using M2

t to represent the ratio of the compressible part of the turbulent kinetic energy to
the total one, an asymptotic development, on an acoustic time scale, of the linear and the quadratic
components of the incompressible field of the pressure through the Poisson equations of these,
leads Sarkar et al. [18] to propose the following expression for the pressure-dilatation term in
isotropic configurations:

�d=−0.4PkM
2
t +0.2��sM

2
t (12)

where the retained constants have the values initially recommended for plane shear layers and
where �s stands for the solenoı̈dal part of the turbulent kinetic energy dissipation rate. Finally, the
last term of the right-hand side of Equation (7) that has to be calculated is the dissipation rate
��=��s+��c considered as being the sum of the solenoı̈dal part �s plus the dilatational part �c.
The common practice followed here is to solve a transport equation for �s while modeling �c.
Accordingly, the transport equation of the solenoı̈dal dissipation rate is written as
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with 	� =1.0. Two classical formulations are considered to express the dilatational dissipation
rate �c. The first one, suggested by Zeman [28] and based on theoretical considerations about the
additional dissipation induced by a given statistic distribution of ‘shocklets’ within the flow, reads
as

�c=
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§According to the Simulog-Incka company which developed the CFD code N3S-NATUR, this constant value has
been retained from various simulation tests of nearly transonic impacting jet configurations (Private communication,
2005).
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where Mt0=0.1
√

(�+1)/2 and 	0=0.6 are the values initially recommended for plane shear
layers. On the other hand, by considering direct numerical simulation results and using asymptotic
analysis, Sarkar et al. [18] suggest the following closure:

�c=�cM
2
t �s (14)

where �c=0.5 is the recommended value when the dilatational dissipation rate and the pressure-
dilatational term are simultaneously taken into account. Finally, the closure of the system of
governing equations is achieved once the coefficient of turbulent eddy viscosity is expressed as a
function of k and � by

�t=C��
k2

�
(15)

In some simulations reported in the literature [26], �t is calculated by using the sole solenoidal
dissipation rate �s. We should remark that this can lead to a significant difference with values
obtained with Equation (16) when the Mach number increases. It is clear that the inclusion of �c
into the expression of �t reinforces the decrease of the turbulent diffusion by decreasing the level
of the turbulent stress in the hydrodynamic transport equations as well as the production Pk in
the k equation. In addition, expressing �c as a function of �s as it is done with the corrections
of Sarkar et al. [18] or Zeman [27], and adding these two contributions to close �t is equivalent
to considering only the solenoı̈dal dissipation with a modified value for C�. As a consequence,
taking only �s into account to express �t may be seen as choosing a new constant C� more adapted
to the particular flow geometry under study. Given that these dissipative corrections have been
originally devised for plane shear layers and that the balance of turbulent kinetic energy is highly
dominated by the production and dissipation terms, it seems natural, if not pragmatic, to check
the relative influence of these two expressions of �t (with � or solely �s) in order to determine the
most adapted level of turbulent diffusion to introduce.

2.3. Numerical method

The numerical resolution of Equation (1) is based on the mixed finite-volume/finite-element
method originally implemented in the CFD code N3S-NATUR [27], which is used and developed
for this study. In order to approximate the weak form of the integral formulation of Equation (1),
a cell-vertex approach on unstructured triangular meshes is used. The construction of each control
volume is illustrated in Figure 2. The boundary �i of each surface Ci is formed by linking the
middles of the segments Mij between the node i and each neighboring node j with the centers of
gravity Gk of each neighboring triangle Tk sharing this node i .

Firstly, the integration of the divergence of diffusive fluxes along �i is performed by using
the finite element P1 on each triangle intersecting Ci . Secondly, a finite volume approximation
is used to perform the integration of the convective terms. The numerical flux Fij along each
interface �ij shared both by �i and � j is evaluated according to the mean direction nij normal to
�ij by applying either the flux splitting method of Van Leer [29] or the linearization of Roe [30]
combined with the entropy fix of Harten [31]. To this end, the implemented hyperbolic solver relies
on the total variation diminishing (TVD) procedure used to extrapolate the two adjacent constant
mean values Uij=Ui + 1

2 (∇U )ij.i j and Uji=Uj − 1
2 (∇U )ij.i j on the left and on the right of �ij,

respectively. The gradient (∇U )ij is here selected by applying either a limiter function ‘minmod’
on the gradients of the physical variables encountered on the triangles intersecting the two adjacent
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Figure 2. Schematic of the dual control volume associated with the mixed FV–FE method.

control volumes, or by applying a Van Albada limiter (defined by the function limiter (a,b)=
((a2+�) ·b+(b2+�)a)/(a2+b2+2�), where � is a very small non-zero constant value) to a centered
gradient (∇U )ij ·i j =Vj −Vi and a half-upwind gradient (∇U )ij ·i j = 1

2 (Vj −Vi +(∇TijV ) ·i j). In
the latter case, the single gradient (∇TijV ) is evaluated by the finite element on the upwind triangle
intersecting the direction given by (ij) (see Figure 2). Finally, in order to avoid a lack of robustness
observed when some implicit temporal schemes are used to perform these simulations of highly
underexpanded jets, an elementary Euler explicit scheme is retained for this first approach to
perform the temporal integration. Within the framework of the Reynolds average Navier–Stokes
simulation retained, the transitional behavior of the solutions is not considered as being meaningful,
so that only the final converged solutions are observed and analyzed.Whatever the exact dependency
of the path of convergence to the Courant–Friedrichs–Lewy (CFL) number retained, the final
converged solution was found to be CFL independent. Accordingly, the CFL number is only chosen
as the best compromise between the stability requirements and the computational time. A value of
0.8 has been found to be adequate for this study. The resulting time-step limitation is compensated
by running the calculations in parallel on a MPI-Linux cluster, thanks to a domain decomposition
algorithm.

3. SPECIFIC ISSUES RELATED TO HIGHLY UNDEREXPANDED JETS’ SIMULATIONS

Whereas the numerical treatment previously presented is robust enough for most of the jet simu-
lations generally performed, some particular difficulties are encountered in the case of highly
underexpanded jets (with an NPR typically greater than 5). This section focuses on the reasons for
these difficulties which motivate the choice of the particular methodology adopted and presented
in the following part.

3.1. Robustness of the hyperbolic solver

The coexistence of the first intense expansion zone and the strong shocks encountered in highly
underexpanded jets leads to problems of lack of robustness and positivity of the upwind numerical
schemes retained. On one hand, the ‘minmod’ limiter is known to be strongly dissipative [32] but
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any other limiter is not likely to be robust enough a priori when NPR is high. On the other hand,
for moderate values of the NPR, Satyanarayana and Balkrishnan [33] have shown that using the
Roe scheme with an adaptive mesh can lead to some solutions which nevertheless yield the same
level of accuracy obtained with more sophisticated schemes such as the AFVS scheme (‘Acoustic
Flux Vector Splitting’) or the KFVS scheme (‘Kinetic Flux Vector Splitting’). In addition, in the
framework of the retained way of building the control volumes, it should be noted that Roe’s
scheme can lead to very satisfying levels of robustness and accuracy on other classical benchmark
configurations [34] such as the subsonic or supersonic Sod test case, the reflection of non-stationary
shocks on a wedge or supersonic flows impacting on a blunt body or a forward facing step. In
fact, in the case of highly underexpanded jet simulations, only this scheme can lead to a first
correct solution. Whatever the initial grid topology and the initial grid density used, the solver
of Van Leer or the use of the Van Albada limiter function leads to the failure of the calculations
if they are used at the beginning of the simulation. Numerous investigations, beyond the scope
of this study, on new variant of combination of numerical scheme and limiting functions would
be required to highlight the exact behavior of these schemes in the particular framework of the
mixed finite-volume/finite-element formulation retained. In fact, for initial simulations of highly
underexpanded jets, Van Leer’s scheme seems to suffer from an over-diffusion of the developing
shear layer and the emerging slip line at the triple point, leading to an incorrect initial curvature of
the Mach disk, which leads rapidly to bifurcate toward an unphysical solution. Then, the minmod
limiter cancels for any node as soon as a change of the sign of the gradients is detected within
the triangular cells surrounding and sharing this node. This gives an isotropic and very dissipative
behavior to the resulting scheme. However, the Van Albada limiting function consists in using
only a combination of an average value of the gradient calculated around each node and a second
estimation found within a single other triangle chosen according to the specific direction given
by the segments connecting this node to its neighboring nodes. Thus, as long as the mesh is not
stretched along the strong discontinuities, a change of the sign of the gradients in the tangential
direction to the discontinuities may not be strictly detected and the use of the Van Albada limiting
function might result in a lack of stabilizing numerical diffusion in those directions during the
initial phase of the calculation. Accordingly, in a first approach, Roe’s method combined with the
minmod limiter and the entropy fix of Harten is retained for the robustness and the simplicity of
the resulting numerical scheme.

3.2. Grid topology and refinement

Upwind procedures are generally developed for one-dimensional flows before being applied for
multidimensional flows by choosing a direction of evaluation. Most of the time, the flux equilibrium
for each control volume is thus updated by precisely evaluating the projection of the mean convec-
tive flux on the mean direction normal to its interfaces instead of evaluating the mean convective
flux itself. When strong shocks are simulated, any privileged mean direction given by nij (if the
grid is based, for example, on regularly split structured meshes) leads to a dramatic propagation
of numerical instabilities and often to non-physical solutions. The numerical artifact observed is
very similar, in this case, to the famous carbuncle phenomenon from a geometric point of view
but could not be avoided by additional numerical dissipation. Thus, the only way to compensate
the propagation of this numerical error is to use irregular meshes of Voronoı̈ type for the initial
grid. Nevertheless, for quite similar reasons, the very strong diffraction shock encountered in the
initial phase of the simulation can lead to a failure of the calculations if this initial grid is too

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2179–2205
DOI: 10.1002/fld



2190 G. LEHNASCH AND P. BRUEL

refined, even if this mesh is of Voronoı̈ type. On the contrary, it should be stressed that too coarse
an initial grid cannot be used because it would also lead to a non-physical solution. Typically, an
overly dissipated barrel shock leads to a Mach disk yielding an inverted curvature followed by a
non-physical recirculation and so inhibits any relevant application of a re-adaptation procedure.
Accordingly, a compromise has to be found at first for the initial density of the grid which has to
be of Voronoı̈ type and the choice of an adaptive meshing procedure might be guided then in order
to help realign at best the mean directions used to evaluate the convective flux on each control
volume with the directions of propagation of the characteristics information.

3.3. Field variables initialization and boundary conditions

The simulation cases considered for this study mainly correspond to jet experiments performed
with converging nozzles designed to give top-hat profiles of the physical variables at the nozzle
exit. With a view to limiting as far as possible the cost of the simulations, the exact nozzle geometry
and the boundary layers are so neglected for this preliminary study and the simulations are only
performed downstream of the orifice section. Thus, the real geometry of the nozzle lip is simplified
and only slip wall conditions are prescribed through the flux components. The Mach number at
this nozzle inlet boundary is imposed to 1.01 in order to ensure the robustness of the simulations.
Accordingly, the values of the physical variables corresponding to an isothermal underexpanded
jet yielding the desired NPR are prescribed in the flux components through the segments belonging
to this nozzle inlet section.

Similarly, for simulations robustness enhancement objective, a very slow coflow at a Mach
number of 0.05 is imposed at the boundary located upstream of the nozzle inlet section as shown
in Figure 3 (segment F12).

Even if a slight coflow is added, the static pressure calculated at some points near the orifice
edge can become slightly too high due to the non-realistic presence of a singular point at the edge
of the nozzle wall. This results in a slight shift of the overall shock structure downstream of its
expected location. Such a numerical artifact has been remedied by introducing a pseudo-nozzle
lip corresponding to the two additional boundary segments F6 and F7 as shown in Figure 3.

Figure 3. Overview of the computational domain (left) and zoom at the inlet boundary
featuring the pseudo-nozzle lip (right).
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The length of these segments is equal to 0.005 times the orifice diameter. The introduction of
this simple and small pseudo-nozzle lip does not modify the geometric features of the expected
jet structure and prevents too great a shift of the levels of the physical variables calculated at the
wall.

The nodal values of the computational domain are usually initialized with the physical state
corresponding to the coflow characteristics. But, in such a case, during the initial phase of the
calculation, a low-density recirculation zone, which appears at the jet boundary, is convected
downstream and is partially reflected at the outlet boundary. In order to limit the strength of such
a vortex, the nodal values are initialized with a physical state chosen to correspond to a Mach
number value of 0.5. Combined with the use of the buffer zone described below, this artificial
low-density region can thus be rapidly evacuated from the computational domain.

Focusing now on the outlet boundary, the application of the one-dimensional theory of charac-
teristics leads to consider that only one physical information (the pressure) has to be prescribed at
the boundary segments if the outgoing flow is subsonic. On short computational domains, such a
pressure profile is quite difficult to determine since the pressure prevailing in the subsonic coflow
does not match the pressure downstream of the Mach disk. It is all the less obvious to adapt these
levels of static pressure as a function of a theoretical for constant level of total pressure since the
decrease in the total pressure is more important through the Mach disk than through the oblique
reflected shock. In order to prescribe a more correct level of pressure in this zone near the axis
for confined underexpanded jets, Prudhomme and Haj-Hariri [21] have suggested extrapolating
the pressure found at the nearest point found within the shear layer where a supersonic state is
detected. However, after some initial tests, this methodology has not been retained here since it
proved to be insufficient to avoid the appearance of artificial recirculation zones upstream of the
outlet section when large values of NPR were considered. Indeed, for such high-speed jets, the air
entrainment from the coflow is sufficiently high to significantly modify the static pressure profile
at the subsonic jet boundary. As a consequence, the prescription of two not perfectly appropriate
different constant profiles of static pressure or total pressure at the subsonic outlet boundaries
of the computational domain induces artificial total pressure differences upstream of these outlet
boundaries and makes the shear layer bend slightly toward the axis. If the grid is refined enough
in this zone, artificial numerical waves could then travel through the subsonic zone and destabi-
lize the upstream structure. Considering that an appropriate profile of pressure (extrapolated from
experimental data which are not available) cannot be prescribed at the exit, it appears necessary to
dampen these artificial numerical waves as far as possible. Adding artificial viscosity upstream of
the outlet boundary is not natural considering the upwind method applied throughout the compu-
tational domain. However, coarsening the grid in a specified zone upstream of this boundary is a
way to reintroduce more naturally some local numerical diffusion. In return, this is in contradiction
with the requirement to use grid adaptation within the near field to improve the spatial accuracy. In
order to find a trade-off between these two opposite requirements (appropriate grid adaptation in
the near field and strong coarsening upstream of the outlet boundary), a procedure of embedding of
the core region within a larger zone, for which a coarsened mesh is employed, has been elaborated
and is described in the next section. Since this procedure removes the requirement to prescribe
accurate boundary conditions at the inlet or outlet section of the computational domain, a simple
update of the physical variables has been used at these boundaries, based on the one-dimensional
theory of characteristics according to the direction normal to the boundary segments. First, the
number of incoming characteristics is evaluated from the local Mach number, in order to update
the corresponding number of physical variables in ghost cells (subscripted by g) located beyond
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the boundaries. Based on far conditions corresponding to the quiescent atmosphere (subscripted
by ∞), the level of the physical variables is updated by using the compatibility relations, that is,

pg
��∞

= p∞
��∞

, ug+ 2ag
�−1

=u∞+ 2a∞
�−1

and ug− 2ag
�−1

=u∞− 2a∞
�−1

respectively for the characteristics:

dn

dt
=un,

dn

dt
=un+a and

dn

dt
=un−a

These ghost cell values are then used directly to evaluate the convective flux components, according
to the upwind numerical scheme used, while the viscous fluxes are neglected at these boundaries.

Last but not least, because of the initial flow field initialization retained, it should be highlighted
that the initial expansion of the jet is nevertheless very important so that the flow direction and its
physical state (subsonic or supersonic) cannot be strictly imposed at the boundary non-orthogonal
to the axis represented by the segment F11 in Figure 3. Accordingly, the flux components at these
boundaries are evaluated by an extension of the Steger–Warming scheme, namely:

F(Ub,U∞)= A
+
(Ub)Ub+A

−
(Ub)U∞ where Ub is the conservative state vector found near

the boundary, and A= A
++A

−
is the jacobian matrix of the convective flux split into two parts

according to the sign of its eigenvalues.

4. MESH ADAPTATION STRATEGY AND VALIDATION

4.1. Presentation of the overall procedure

The overall strategy adopted to overcome the numerical difficulties previously described is illus-
trated in Figure 4. After the choice of an appropriate initial core grid and appropriate initial
conditions (step 1), it mainly consists in building a thin but strongly coarsened zone around the
core grid and merging these (step 2) before performing the first simulation (step 3). The converged
solution obtained at this step within the buffer zone is highly diffused on purpose and so is not
considered. Thus, the solution corresponding to the core domain is extracted (step 4) and used
to apply the chosen adaptive meshing procedure and generate a new adapted core grid (step 5).
Generating a new corresponding buffer zone and initializing the new overall grid based on the
solution previously obtained, this overall cycle is repeated several times until a core grid conver-
gence is reached. Depending on the level of NPR considered, two or three cycles are necessary.
For each flow simulation (i.e. step 3), the criterion of convergence used is based on the L2 norm
of the density (non-dimensionalized by its initial value) and is adapted for each level of NPR.

4.2. Grid adaptation algorithm

The anisotropic mesh adaptation (AMA) algorithm of Dolejši [35] is chosen to progressively build
the best adapted mesh for the core part of the grid. When an isotropic distribution of nodes is used
in a finite triangular and linear element approach, the principle of the adaptation is based on the
fact that the higher the curvature, the more important the interpolation error will be. Consequently,
for a given level of grid density, the interpolation error can be decreased and more uniformly
redistributed if the triangles are anisotropic and stretched normal to the isolines of the greatest

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2179–2205
DOI: 10.1002/fld



ROBUST METHODOLOGY FOR RANS SIMULATIONS 2193

Figure 4. Illustration of the initial stages of the cycle of the mesh adaptation strategy adopted: step 1,
initial core region mesh; step 2, embedding of the core mesh; step 3, flow simulation until convergence;
step 4, extraction of the solution in the core region; step 5, remeshing of the core region and comparison

with the previous core region mesh of step 1 to determine if a new cycle must be completed.

values of curvature. Thus, the method consists in evaluating the local curvature of a significant
physical variable (the density for the present simulations of underexpanded jets) in order to build
a new metric for which the ideal lengths of all triangle edges should be equal. In order to best
set the lengths of the segments (locally evaluated with the new metric) to their ideal length, local
operations of edge splitting, node removal or sweeping are thus iteratively applied. This method
results not only in clustering nodes where the gradients are high and in reducing the number
of nodes elsewhere but also in progressively lining up the triangular meshes with the various
discontinuities. As a consequence, the accuracy of the evaluation of the convective fluxes is highly
improved (within the limits of the relative one-dimensional upwind method).

4.3. Initial grid

An iterative loop splitting algorithm [36] implemented in the ‘QUAD’ module of the mesh generator
ICEMCFD has been chosen for generating the initial meshes. This algorithm has been retained
in particular for its robustness and for the resulting mesh quality. The first loop considered is
the polygonal closed line formed by linking each boundary segment of the core zone (segments
F1–F8 in Figure 3). The imposition of a given mesh size at each of these segments leads to
the initial distribution of nodes on the initial loop. Each loop is then iteratively split into two
sub-loops by linking two nodes of the previous loop. The splitting segment is chosen based on an
estimated error criteria used to lead to triangles as close as possible to equilateral triangles and
to the shortest lengths of the splitting segments. On comparison with frontal methods, this initial
meshing procedure generates fewer triangular elements near the boundaries where a very small
mesh size is used (such as the pseudonozzle lip) while the transition of the mesh sizes throughout
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the computational domain is particularly regular. This latter advantageous characteristic is fully
used to separately build a regularly coarsened buffer mesh on the surrounding domain (segments
F4, F3, F2, F9–F13 in Figure 3).

4.4. Validation of the strategy adopted

Two computational domains are considered for the validation of the strategy developed: a short
domain with a length of 13.5De (core zone length=10De) and 30De long one (with a core zone
length of 20De). The effect of using a short computational domain surrounded by a coarsened
grid proves to be marginal on the solutions of the near field as it is illustrated in Figure 5 for an
inviscid jet at NPR=7.55.

Whatever the NPR considered (ranging from 1 to 15.53), converged solutions at each cycle
are obtained with the present mesh adaptation strategy. For all turbulent jets’ calculations, three
cycles are enough to obtain a final core mesh and a corresponding flow solution which do not
present further significant changes if additional cycles are performed. Figure 6 illustrates, for an
underexpanded turbulent jet at NPR=7.55, the kind of mean longitudinal velocity component
profile evolution observed during the course of the mesh adaptation cycles and the fairly global grid
density independence which is obtained. The required grid density mainly depends on the extension
of the discontinuities and thus on the value of NPR. For instance, for a highly underexpanded
turbulent jet at NPR=7.55 and for the shortest computational domain, a 10 000-node mesh proved
to yield satisfactory results after only three loops of mesh adaptation.

A zoom of the generated grid in the vicinity of the triple point, presented in Figure 7, illustrates
how the mesh elements are suitably stretched and aligned along the various strong waves of
discontinuities. The near-field solutions (say for X/De<10) obtained on the two computational
domains are similar. The main difference between the two solutions is mainly restricted to the
zone located near the axis just downstream of the Mach disk so that it appears to be related to a
different distribution of nodes in the near zone but not to the presence of the buffer zone. As a
consequence, the utilization of such a buffer zone enables not only a lessening of the reflexivity
of the outlet boundary but also the natural imposition of a necessary piece of information within
the subsonic zone downstream of the Mach disk.

Figure 5. Influence of the length of the computational domain: comparison of the axial evolutions of the
pressure, the longitudinal velocity and the temperature obtained on each computational domain (10De

and 20De long, respectively) for an inviscid jet at NPR=7.55.
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Figure 6. Sensitivity of the turbulent jet solution at NPR=7.55 to the number of mesh adaptation loops
(left) and to the prescribed number of grid nodes (right).

Figure 7. Illustration of the grid topology obtained around the triple point after three grid adaptation
cycles for the simulation of an underexpanded turbulent jet at NPR=15.53.

5. PERFECTLY EXPANDED JET SIMULATIONS

Most of the various approaches previously presented and retained to take the compressibility
effects into account have already been directly and separately used for simulating axisymmetric
underexpanded jets [17, 19]. Nevertheless, it should be recalled that these corrections have been
initially adapted for two-dimensional shear layers. Thus, as a first evaluation step, these corrections
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Figure 8. Perfectly expanded turbulent jet: evolutions of the mean longitudinal velocity component predicted
by using various combinations of turbulence models corrections. a, experimental results of Seiner et al.
[37]; b, standard k–� model; c, (respectively d) k–� model with addition of the pressure-dilatation and
dilatational dissipation from Sarkar et al. [18] (respectively Zeman [27]) and with expressing �t from the
solenoidal dissipation; e, k–� model with addition of the pressure-dilatation and dilatational dissipation
from Sarkar et al. [18] with expressing �t from the total dissipation; f, (respectively g) k–� model
with addition of the pressure-dilatation and dilatational dissipation from Sarkar et al. [18], the enthalpic
production term from the gradient-type approximation (respectively Shyy and Krishnamurthy [24]) and

by expressing �t from the solenoidal dissipation.

have been tested on the configuration of a perfectly expanded axisymmetric jet experimentally
studied by Seiner et al. [37]. In order to check also that the mesh re-adaptation procedure is
fully valid for an axisymmetric jet configuration and to choose a priori the most appropriate
combination of models for the various compressible terms presented in subsection 2.2, several
perfectly expanded jet simulations are performed. The value of the exit Mach number is equal to
2 and is only slightly lower than the levels encountered within the shear layers considered for the
higher levels of under-expansion tested and presented in the following section. This preliminary
validation study is performed by prescribing a turbulence intensity corresponding to an amplitude
of the longitudinal fluctuations equal to 5% of the mean velocity at the nozzle section, a length
scale equal to 0.14De and the commonly adopted value of 0.7 for the turbulent Prandtl number.
Roe’s scheme is used and is combined with a minmod limiter and an entropy fix coefficient equal
to 0.05, while the CFL number is set equal to 0.8. The initial core computational domain is 20De
long and contains 20 128 nodes. Several possible combinations of models have been tested after
a thorough check of the independence of the results to the initial grid density (with typically
6500 nodes in the core region for the adapted final mesh). Figure 8 presents a few examples of
the predicted axial evolutions of the mean longitudinal velocity component (normalized by the
mean velocity at the nozzle section V xe) corresponding to the solutions obtained with the different
turbulence model combinations. One recovers the well-known tendency of the standard k–� model
to introduce an excess of diffusion whereas the Zeman model yields an overly pronounced decrease
of turbulent kinetic energy that can be mainly attributed to a lack of universality of the current
constant retained for this model. Clearly, a full parametric study (beyond the scope of the present
study) would be necessary to check whether this model could be easily improved for the present
axisymmetric jet configuration. The contribution of the enthalpic production term G appears to
be quite marginal for this perfectly expanded jet with no noticeable difference related to the two
expressions tested. Indeed, a marginal decrease of about 2% of the dimensionless velocity in the
inertial zone at a distance from the orifice greater than about 15De can be typically observed when
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G is taken into account. Nevertheless, the model of Shyy and Krisnamurthy will not be retained
for jet simulations at higher NPRs, because its use leads quite systematically to a failure of the
calculations when it is applied to highly underexpanded jet configurations, probably due to an
excessive contribution of the shear stress components during the initial phase of the simulation.

Among the various model combinations tested, the best physical representation of the jet
combined with a satisfactory level of robustness is obtained by using (i) a gradient-type closure
for the enthalpic production; (ii) an expression of the turbulent viscosity coefficient based on the
solenoı̈dal dissipation rate only; and (iii) the models of Sarkar et al. [18] for both the dilatational
dissipation rate and the pressure-dilatation term. Accordingly, such a combination of model correc-
tions, called the reference model in the following, will be adopted for the simulations of highly
underexpanded jets. It is therefore given by
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By using this reference model, the jet growth characteristics and the self-similar behavior in the
near zone are correctly reproduced as it is illustrated in Figure 9 where r(0.5) is the location at
which half of the axial velocity V -axis is found and 
c=r(0.95)−r(0.05) is the width of the
shear layer estimated from the locations where the values corresponding to 5 and 95% of the
axial velocity are reached. The fact that the initial spreading of the jet is underestimated could
be related to an overestimation of the entrainment of the coflow at the jet boundary near the exit
when compared with what is experimentally observed.

6. HIGHLY UNDEREXPANDED JET SIMULATION RESULTS

Two jet configurations experimentally studied by Yüceı̈l et al. [38, 39] have been simulated. They
correspond to NPR=7.55 and 15.53, respectively.
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Figure 9. Perfectly expanded jet—simulations with the reference turbulence model: (a) evolution of the
distance where half of the axial velocity is reached and (b) self-similar behavior of the profiles of the

mean longitudinal velocity component for X/De =1, 3, 5, 7, 9 and 11 (solid lines).

6.1. Sensitivity to the numerical solver

Because of a lack of robustness during the initial phase of the calculation, the Van Leer/Van Albada
limiter could not be used for NPR greater than 1, whereas Van Leer’s flux splitting method coupled
with the use of a minmod limiter could be used only from the second cycle of the simulation.
Nevertheless, switching from Roe’s solver to Van Leer’s solver from this second cycle results
in quite the same final jet structure and as a consequence, Roe’s algorithm is preferred for its
robustness and is used to obtain the solutions presented in the following subsections.

6.2. Representation of the near jet structure

A qualitatively correct representation of the jet structure is predicted as it can be seen in Figure 10.
The adaptation of the static pressure is mainly realized through the near shock structure as it
is supposed to be from a theoretical point of view. Owing to the important difference of total
pressure found between each side of the slip line, three couples of expansion and compression
zones are visible within the supersonic layer and the overall adaptation mechanism is carried
on up to a distance of about 10De from the nozzle section, which is in agreement with the
experimental observations of Yüceı̈l et al. [38, 39]. The accuracy of the geometric extension of
the simulated shock structure at NPR=15.53 is evaluated by comparing (i) the predicted value
of the Mach disk location Xdm against the experimental data of Love [10], the value obtained
from processing Schlieren visualizations provided by Yüceı̈l and Ötügen,¶ the correlations of
Ashkenas and Sherman [6] and Ewan and Moodie [7] and (ii) the predicted value of the Mach disk
diameter Ddm with the value given by the correlation of Antsupov [8]. The different correlations are

¶Private communication, 2003.
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Figure 10. Underexpanded turbulent jet at NPR=15.53—visualization of the near-jet structure: isolines
of the mean longitudinal velocity component from the present simulations (solid lines) against (i) the
experimental location of the shock structure from Yüceı̈l and Ötügen (symbols) and (ii) the domain of

location given by the correlations of Equation (18) (dashed line).

given by
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e

(
pe
pa

)

Ddm

De
= log

((
pe
pa

)5/2
)

− 3

4

(18)

where po, pe and pa are the upstream total pressure, the static pressure at the inlet section and
the static pressure of the ambient atmosphere, respectively. De must be expressed in millimetres
for the second following correlation yielding Xdm.

The longitudinal extension of the first shock cell appears to be overestimated in the simulations
and the simulated Mach disk yields a more important level of curvature than expected but with a
quite correct radial extension. The most important discrepancy in the shock location is observed
for the largest value of NPR tested and is estimated to be equal to 14% in terms of X/De.

In fact, this shift appears more clearly from a position located near the one where the barrel
shock has reached its maximal extension and seems to be related to a failure of Roe’s scheme
when a limit value of the Mach number is reached during the expansion process. This hypothesis
is confirmed by the comparisons of axial evolutions of velocity shown in Figure 11 for turbulent
jet simulations at NPR=7.55. The axial velocity appears to be overestimated not only in the
expansion zone (up to +20%) but it also keeps on decreasing downstream of the Mach disk
instead of increasing again by expansion of the surrounding supersonic layer. It thus seems to be
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Figure 11. Underexpanded turbulent jet at NPR=7.55: evolutions of mean longitudinal velocity component
obtained from the present simulations and from the experimental results of Yüceı̈l et al. [38, 39].

only related to a perfectible shock geometry obtained around the triple point which leads to an
initial slip line diverging toward the jet boundary instead of bending directly toward the axis. This
suggests that the origin of such a numerical artifact could be related to the inaccurate straight
profile of physical variables prescribed at the inlet boundary (Segment F8 in Figure 4), and so a
separate study has been carried out to check the qualitative influence of the deformation of the
profiles at this inlet section. The results obtained (by using isotropic mesh refinement within the
near field) prove that the Mach disk diameter depends strongly on the initial inclination of the
streamlines but that the same inaccurate levels of the Mach disk curvature are always observed
whatever the profile prescribed at the inlet boundary and the method of mesh refinement used. As
a consequence, this drawback may be mainly attributed to a weakness of the hyperbolic solver.
Additional tests are required to find a more accurate but equally robust scheme than Roe’s scheme.

6.3. Representation of the turbulent mixing

In spite of the discrepancies observed for the velocity field within the potential core, the main
features of the overall turbulent structure are correctly captured.

Figure 12 illustrates, for example, the typical development of the main shear layer surrounding
the internal shear layer issued from the triple point at NPR=7.55. The locations of the maximum
shear stress are in good agreement with those extracted from the results of Yüceı̈l and Ötügen [38].
Whereas the levels of vorticity are largely overestimated at the jet boundary near the nozzle (twice
as much i.e. 6E5s−1 instead of about 3E5s−1), these levels decrease rapidly downstream of the
location where the shock extension is maximal to reach values of 1E5 to 1.5E5s−1 which are close
to the experimental values. In addition, the observed overall development of these two uncoupled
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Figure 12. Underexpanded turbulent jet at NPR=7.55: simulated mean vorticity field.

Figure 13. Underexpanded turbulent jet at NPR=15.53: longitudinal evolution of the radial profiles of
the mean longitudinal velocity component.

shear layers up to a distance of at least 7De is also in good agreement with the experimental
observations. Nevertheless, by comparing the radial profiles of longitudinal velocity downstream
of the Mach disk with the available experimental data at NPR=15.53 (see Figure 13), it can be
noted that the radial turbulent diffusion is underestimated. The predicted length of the potential
core is equal to about 9De, whereas the experimental profiles show that the shear layer reaches the
axis for X/De around 5 or 6. According to the validation of the chosen compressibility corrections
previously presented for a perfectly expanded jet, these new results prove that the reference model
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remains incomplete when only compressibility corrections are added. Sarkar’s correction only acts
to decrease the level of k within the shear layer (by 7 to about 20% from X/De=1–5 for instance in
the case of the perfectly expanded jet previously studied) without greatly modifying the dissipation
rate. Besides, the effect of the enthalpic production remains marginal even for such high levels of
baroclinic torque found within the near field. This results in a decrease of the global mixing in
each of the shear layers, whereas the turbulent mixing is in fact highly increased downstream of
the Mach disk of highly underexpanded jets.

While these compressibility effects are of prior importance to correctly predict the far field,
the results obtained presently prove that their influence remains marginal within the near field.
As a consequence, one can assume that the peculiar turbulent mixing within the subsonic tran-
sitional zone downstream of the Mach disk is mainly piloted by the strong curvature effects
encountered.

7. CONCLUSIONS AND PERSPECTIVES

The mixed cell-vertex finite-volume/finite-element method implemented into the CFD code
N3Snatur has been coupled with an anisotropic mesh adaptation algorithm to simulate the complex
mean structure of highly underexpanded turbulent jets. The various numerical difficulties, encoun-
tered when simplified and reduced numerical domains are used, have been described and related
to the peculiarities of the near field of the structure of these jets. An overall strategy has thus been
suggested to overcome these. It consists in iteratively readapting a ‘core grid’ to progressively
improve the numerical accuracy within the near field and to surround this ‘core grid’ at each step
of the simulation by a strongly coarsened ‘buffer grid’ in order to naturally dissipate the spurious
reflected numerical waves. The influence of such a ‘buffer grid’ and that of the simplified nozzle
geometry on the jet solution remains marginal in the field of interest. Thus, by prescribing a
reasonable number of nodes and by using a sufficiently robust hyperbolic solver, this strategy can
rapidly lead to correctly converged solutions which yield qualitatively correct jet features over
a wide range of NPR. To the authors’ knowledge, this is the first time such numerical results
obtained for NPR greater than 5 are compared not only with experimental axial evolution but
also for the whole near field. Given the simplicity of the models used, the highly underexpanded
jet solutions obtained are promising. The main features of the mean complex jet structure are
correctly reproduced up to the highest level of NPR simulated while the remaining inaccuracy
can be clearly related to two main origins. Firstly, Roe’s scheme induces an excessive numerical
diffusion within the strong expansion zone so that a new compromise has to be found between
robustness and accuracy by implementing and testing more sophisticated hyperbolic solvers for
high NPR. Secondly, the results obtained show that the compressibility effects, commonly used
to model such flows, only play a minor role in the near field in comparison with the strong
curvature effects encountered at the jet boundary near the nozzle or just downstream of the Mach
disk. In order to continue to optimize the accuracy/cost ratio of the simulations, improvements
in the accuracy of the potential core length prediction may be expected, in particular, by testing
adapted non-linear closures of the Reynolds stress tensor components. Preliminary tests have
been performed to combine such closures (in particular based on the non-linear algebraic stress
model of Shih et al. [40]) with the required compressibility corrections required for the far field.
Unfortunately, the current modeling appears to make the numerical method unstable, even for
reduced CFL numbers. Further works will consist in determining among the available non-linear
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models available, whether adequate limiting functions may be used for the various terms of the
transport equations of kinetic turbulent energy and turbulent dissipation in order to make such
non-linear closures efficiently useable in the framework of the simulation of highly underexpanded
jets.

NOMENCLATURE

ai initial angle between the jet boundary and the axis
ar angle between the reflected shock and the axis
Ci control volume around node i
De nozzle diameter
Dr radial diffusive flux vector
Dx longitudinal diffusive flux vector
Ddm Mach disk diameter
E total energy
Fr radial convective flux vector
Fx longitudinal convective flux vector
G enthalpic production
k turbulent kinetic energy
NPR nozzle pressure ratio
Dk diffusion of turbulent kinetic energy
M Mach number
Mt turbulent Mach number
Pk production of turbulent kinetic energy
p pressure
Sr radial source vector
Sx longitudinal source vector
U vector of conservative variables
Uij state vector of conservative variables on the left of �ij
Uji state vector of conservative variables on the right of �ij
vr radial velocity component
vx longitudinal velocity component
vxe longitudinal velocity component at the nozzle exit
v� orthoradial velocity component
Xdm position of the Mach disk from the nozzle exit
�c dilatational dissipation rate of the turbulent kinetic energy
�s solenoidal dissipation rate of the turbulent kinetic energy
� density
� ratio of heat capacities
� molecular viscosity
�t coefficient of turbulent viscosity
�d pressure dilatation term
�i boundary of control volume Ci
�ij boundary between control volumes Ci and C j
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